일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- Classical Mechanics
- RG flow
- Pen Art
- Covariant derivatives
- General Relativity
- electromotive force
- Quantum Mechanics
- Theories of Education
- Topological Tensor
- spinor QED
- Electromagnetics
- Quantum Field Theory
- pedagogy
- Rigid Body Dynamics
- Quantum electodynamics
- Conformal Mapping
- bayesian
- induced emf
- Tensor Calculus
- Paulo Freire
- 프레이리
- Hamiltonian Mechanics
- Taylor expansion
- Complex analysis
- Noether's thm
- Lagrangian Mechanics
- Dirichlet problem
- higher derivatives
- Orbital Dynamics
- scalar QED
Archives
- Today
- Total
목록bayesian (1)
Physvillain

In this post, I'm planning to cover the basic statistics required for ML, which is maximum likelihood estimator(MLE) & maximum a posteriori(MAP) estimator. The latter one is based on the Bayesian approach. [Definition 1] If $X_1, \cdots, X_n$ are independent and identically distributed(call it i.i.d. for convenience) random variables with the pdf or pmf $f(x\vert\theta)$, then the function of $\..
Machine Learning
2021. 7. 31. 11:57