일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- Tensor Calculus
- Lagrangian Mechanics
- Complex analysis
- Covariant derivatives
- Quantum Field Theory
- Quantum Mechanics
- pedagogy
- Paulo Freire
- Pen Art
- Electromagnetics
- higher derivatives
- Noether's thm
- RG flow
- bayesian
- Rigid Body Dynamics
- Orbital Dynamics
- spinor QED
- Conformal Mapping
- induced emf
- Topological Tensor
- Quantum electodynamics
- General Relativity
- Dirichlet problem
- Classical Mechanics
- Taylor expansion
- Theories of Education
- 프레이리
- Hamiltonian Mechanics
- scalar QED
- electromotive force
Archives
- Today
- Total
목록higher derivatives (1)
Physvillain

Let $P$ is an arbitrary zero point at which we expand around. Then expanding metric around $P$ is : $$g_{ij} = \left. g_{ij} \right\vert_{P} + \frac{1}{2!} \left. \left( \partial_k g_{ij} \right) \right\vert_{P} x^k + \frac{1}{3!} \left. \left( \partial_{k_2}\partial_{k_1} g_{ij} \right) \right\vert_{P} x^{k_1} x^{k_2} + \cdots$$ Curvature tensor generally describes $\nabla_{[i}\nabla_{j]}$. Exa..
General Relativity
2021. 11. 25. 14:56